An Algebraic Characterisation of Complexity for Valued Constraint
نویسندگان
چکیده
Classical constraint satisfaction is concerned with the feasibility of satisfying a collection of constraints. The extension of this framework to include optimisation is now also being investigated and a theory of so-called soft constraints is being developed. In this extended framework, tuples of values allowed by constraints are given desirability weightings, or costs, and the goal is find the most desirable (or least cost) assignment. The complexity of any optimisation problem depends critically on the type of function which has to be minimized. For soft constraint problems this function is a sum of cost functions chosen from some fixed set of available cost functions, known as a valued constraint language. We show in this paper that when the costs are rational numbers or infinite the complexity of a soft constraint problem is determined by certain algebraic properties of the valued constraint language, which we call feasibility polymorphisms and fractional polymorphisms. As an immediate application of these results, we show that the existence of a non-trivial fractional polymorphism is a necessary condition for the tractability of a valued constraint language with rational or infinite costs over any finite domain (assuming P 6= NP).
منابع مشابه
The Power of Sherali-Adams Relaxations for General-Valued CSPs
We give a precise algebraic characterisation of the power of Sherali-Adams relaxations for solvability of valued constraint satisfaction problems to optimality. The condition is that of bounded width which has already been shown to capture the power of local consistency methods for decision CSPs and the power of semidefinite programming for robust approximation of CSPs. Our characterisation has...
متن کاملAn Algebraic Characterisation of Complexity for Valued Constraints
Classical constraint satisfaction is concerned with the feasibility of satisfying a collection of constraints. The extension of this framework to include optimisation is now also being investigated and a theory of so-called soft constraints is being developed. In this extended framework, tuples of values allowed by constraints are given desirability weightings, or costs, and the goal is to find...
متن کاملComputing Science AN ALGEBRAIC THEORY OF COMPLEXITY FOR VALUED CONSTRAINTS: ESTABLISHING A GALOIS CONNECTION
The complexity of any optimisation problem depends critically on the form of the objective function. Valued constraint satisfaction problems are discrete optimisation problems where the function to be minimised is given as a sum of cost functions defined on specified subsets of variables. These cost functions are chosen from some fixed set of available cost functions, known as a valued constrai...
متن کاملAn Algebraic Theory of Complexity for Valued Constraints: Establishing a Galois Connection
The complexity of any optimisation problem depends critically on the form of the objective function. Valued constraint satisfaction problems are discrete optimisation problems where the function to be minimised is given as a sum of cost functions defined on specified subsets of variables. These cost functions are chosen from some fixed set of available cost functions, known as a valued constrai...
متن کاملA note on some collapse results of valued constraints
Valued constraint satisfaction problem (VCSP) is an optimisation framework originally coming from Artificial Intelligence and generalising the classical constraint satisfaction problem (CSP). The VCSP is powerful enough to describe many important classes of problems. In order to investigate the complexity and expressive power of valued constraints, a number of algebraic tools have been develope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006